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Numerical simulations of flows of fluids with granular materials using the Eulerian-Lagrangian approach
involve the problem of modeling of collisions: both between the particles and particles with walls. One of the
most popular techniques is the hard-sphere model. This model, however, has a major drawback in that it does
not take into account cohesive or adhesive forces. In this paper we develop an extension to a well-known
hard-sphere model for modeling particle-wall interactions, making it possible to account for adhesion. The
model is able to account for virtually any physical interaction, such as van der Waals forces or liquid bridging.
In this paper we focus on the derivation of the new model and we show some computational results.
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I. INTRODUCTION

One of the techniques used for simulating of two-phase
flows is the Eulerian-Lagrangian approach, where the solid
phase is modeled as a system of individual points, subject to
forces according to their size and shape. The forces acting on
the particles and causing them to move are a result of the
interaction with the flow and collisions with other particles
and containing walls. An important issue when investigating
such flows using this approach is the proper modeling of
these collisions.

There are various methods for this. The two main types of
models are hard-sphere models and the soft-sphere models
�see, for instance, Crowe et al. �1��. The difference between
them is in how particle deformation and friction during im-
pact are treated. In the hard-sphere model the concept of
particle deformation and frictional sliding may be involved
in the derivation of the model, but they do not appear in the
mathematical formulation, which is in terms of impulse
equations. In the soft-sphere model, on the other hand, “me-
chanical elements” such as a spring, dash pot, and friction
slider are used to mimic the behavior of the two colliding
particles or a particle colliding with a wall and their actions
are described by differential equations.

In this paper we focus on the first type of model: the
hard-sphere model. Hard-sphere models are used extensively
in the numerical simulation of particle or fluid-particle sys-
tems. Particularly popular has been the simulation of fluid-
ized beds �see, for example, references �2–5�, this topic was
recently reviewed by Deen et al. �6�� and two or three phase
flows in pipes or reactors �e.g., references �7–13��. Moreover,
it has been used for studying fast flows with particles, like
shock waves interacting with dusts or explosions �see, for
example, our previous works: �14–16��.

Two hard-sphere collision models are widely used, that of
Hoomans et al. �17�, and that of Crowe et al. �1�. Neither of
these models takes into account cohesion between the par-
ticles or adhesion of a particle to a wall. As a result particles
will always, unless the collision is made complete inelastic
by setting the coefficient of restitution to zero, bounce off
after a collision, even though their initial speed, size, and
surface properties indicate that they should not escape the
collision but adhere resulting in the formation of an agglom-
erate.

There are many processes in industry where this is of
importance. Some examples are: the formation of hydrate or
wax plugs in pipelines in the oil and gas industries, manu-
facturing of carbon black or fluidized beds processes where
the particles are very fine or sticky.

Much of the work in the published research literature
aimed at modeling particle cohesion has, until now, been
dedicated to the simulation of fluidized beds. Reviews of the
role played by interparticle cohesion in fluidized beds have
been written by Visser �18� and Seville et al. �19�.

Basically cohesive forces can be included in Eulerian-
Lagrangian simulations in two ways. The first strategy is to
include the cohesive force in the particle equation of motion
and thus simply include it as an extra force acting on the
particle in the numerical scheme. Most of the published lit-
erature has been focused on this approach using soft-sphere
collision models. Some examples are: Mikami et al. �20�,
who extended the classical soft-sphere collision model of
Tsuji et al. �21� with an extra nonlinear spring and a rupture
joint to account for the cohesive force exerted between par-
ticles connected by a stretching liquid bridge, which ruptures
at a given critical surface separation. In another context, Lian
et al. �22� studied the collision of pendular-state agglomer-
ates, building on their earlier work to characterize the cohe-
sive forces arising from pendular bridges �23�.

Also the behavior of dry granular materials that are so fine
that surface forces play a role in their macroscopic behavior
have been studied using this strategy. Baxter et al. �24� stud-
ied problems with the flow of granular materials arising from
van der Waals forces, modeled by a Lennard-Jones type po-
tential, including short-range repulsion, but modified to al-
low for some particle deformation, and the associated cohe-
sion, in the contact point. Ye et al. studied the fluidization of
fine powders �Geldart Group A� modeling particle cohesion
with a Hamaker-type interaction, but without including
short-range repulsion. To avoid the singularity at particle
contact, the force was cutoff at a finite surface separation,
chosen so that it is consistent with the physics of a contact
point �25�. Pandit et al. �26� also studied the particulate flu-
idization of Geldart Group A powders using a Hamaker-type
particle interaction.

The second strategy is what we are going to focus on in
this paper. In this approach, the cohesive force is incorpo-
rated directly into an impulse-based collision model. We thus
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aim to extend the hard-sphere model so that it becomes pos-
sible to account for cohesion or adhesion processes.

We note at this stage that in fluidized systems or granular
flow, which most of the above references are concerned with,
it may be convenient to incorporate the particle interaction
force in the particle equation of motion, and thus directly in
the numerical scheme. Complexity in the form of the inter-
action force law, F�D�, is then less of a problem. However,
in more dilute flows, where the particle displacement within
one time-step may be much higher, it is not computationally
efficient to simulate the interaction directly in this way.
Rather incorporating the interaction in the collision model
would be more desirable. Another advantage of incorporat-
ing interparticle or particle-wall interaction in an impulse-
based collision model is, as pointed out by Weber et al. �27�
that such a collision model may be incorporated in con-
tinuum schemes for the simulation of the dynamics of a dis-
persed phase.

Perhaps the most relevant papers for the present paper are
the two articles by Hrenya and co-workers �27,28�. In these
papers they introduced a very simple particle interaction po-
tential suitable for incorporation in a hard-sphere collision
model, although they stopped short of formulating such a
model themselves. Rather than using the full Hamaker inter-
action, allowed a dirac-delta-type attractive force to act be-
tween two particles at a certain surface separation, creating a
square-well potential from which two colliding particles
might or might not escape after a collision, depending on the
velocity of impact and the coefficient of restitution. The rea-
son for using this simple interaction law is that a law suitable
for implementation in impulse-type particle collision models
needs to be very simple.

Hard-sphere models, e.g., the one of Crowe et al. �1�,
which we will be working with here, are based on estimating
the impulses �time-integrated forces� acting on particles dur-
ing specified periods during the collision, due, for instance,
to elastic/plastic deformation, and thus estimate translational
velocity changes:

�v =� Fdt , �1�

with a similar time-integrated equation for the change in the
rate of particle rotation incurred by an angular impulse �mo-
ment of impulse, see also below�.

As Hrenya and co-workers point out that implementation
in such a model of a given functional form for F as a func-
tion of surface separation, D, is not straight forward since the
time-integral depends on the time that the particle spends
within the F field, which depends not only on the approach
and departure velocities to and from the collision but also,
due to the particles’ reaction to F, on F itself. This makes it
impossible to find an analytical solution to Eq. �1� even for
the simple form of the Hamaker interaction without the re-
pulsion term. Hrenya and co-workers tackle this problem by
tweaking the depth of their square-well potential so that it
matches numerical simulations of Hamaker interactions.

It is not the focus of this paper to determine the best
functional form for F. We mention two theories for interac-

tion that are more complete than Hamaker interaction be-
tween rigid bodies: the Johnson-Kendall-Roberts theory �29�
criticized subsequently by Derjaguin et al. �30�, leading to
the formulation of the so-called Derjaguin-Muller-Toporov
�DMT� theory. These theories are based on the analysis of
the interaction between bodies deformed due to a normal
load �e.g., as a consequence of a collision�.

We recount those features of the hard-sphere model of
Crowe et al. that will be relevant in the derivation of our
extension to the model:

�i� The collision process is divided into two periods: com-
pression, where the material of the particles is deformed and
recovery, where the force due to elastic deformation is re-
leased.

�ii� The model takes into account the fact that the particle
may slide along the surface upon which it impacts for some
or all of the collision period. If it stops sliding it rolls over
the surface for the rest of the collision period. The model
distinguishes between three cases:

�I� the particle stops sliding during the compression pe-
riod;

�II� the particle stops sliding during the recovery period,
and

�III� the particle continues to slide throughout the entire
collision.

�iii� The model is formulated in a Cartesian coordinate
system where the y axis is normal to—and pointing away
from—the wall on which the particle impacts �see Fig. 1�.

The main application of this research is to model solid
particles that are present in industry �e.g., in the transport of
solids, in fluidized beds, catalyst particles, dusts in mines�,
including very small particles �e.g., aerosols, soot�. We are,
however, focusing not on applications but on physical as-
pects: the extension of an existing model to account for more
complex physical interactions �adhesion�.

In this paper, we are considering the point in time where a
particle collides with a solid wall. The period of collision is
so short that the impulses due to the normal fluid-dynamic
forces acting on the particle, such as drag and lift, are neg-
ligibly small. The only fluid-dynamic force that is relevant to
our model is that due to the fluid between the particle and the
wall, which is squeezed out during the approach and sucked
in during the departure �1�. We will discuss how to take this
into account in Sec. II F.

II. DERIVATION

The standard hard-sphere model is quite extensively de-
scribed in Crowe et al. �1� and therefore we base our exten-
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FIG. 1. Situation sketch.
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sion on the formulation and notation from this reference. The
interested reader may also find descriptions of the model in
other sources, e.g., Refs. �31–33�.

Following the notation of Crowe et al., we denote the
above-mentioned periods of the collision by superscripts. For
the translational and angular particle velocities, v and �,
respectively, we denote by superscript �0�, �1�, �2�, and �s�
the values before the collision, at the end of the compression
period, at the end of the recovery period and at the end of the
sliding period, respectively. The notations for the impulses
are different for the different cases and are given below.

A. Case I

1. Model—impulse equations

In this case, as mentioned, the particle stops sliding dur-
ing the compression period. For the impulse components,
Ji=�Fidt, we denote by superscript �1�, �2�, and �s� the im-
pulses during the compression, the recovery and the sliding
periods, respectively, and by superscript �r� the impulse dur-
ing the “remainder” of the compression period after the par-
ticle has stopped sliding.

The set of impulse equations in the y direction in the
model of Crowe et al. �1� for the sliding period is

m�vx
�s� − vx

�0�� = Jx
�s�, �2a�

m�vy
�s� − vy

�0�� = Jy
�s�, �2b�

m�vz
�s� − vz

�0�� = Jz
�s�. �2c�

The impulse acting on the particle in the y direction Jy
�s�

=�Fydt is due to the deformation of the particle material: the
compression and subsequent recovery during the collision.
Part of the deformation will be elastic, and part plastic, the
latter giving rise to a dissipative loss of mechanical energy,
accounted for by a coefficient of restitution in the model of
Crowe et al.

This force/impulse acting on the particle is always di-
rected away from the wall on which the particle impacts, and
is responsible for particle bouncing off the surface. The hard-
sphere model does not consider any other forces acting along
y axis.

In the extension to this model we will implement another
force, acting toward the wall surface—allowing for phenom-
ena like adhesion �see Fig. 2�. We thus operate with an ad-
ditional impulse Jt= �0,Jy,t ,0� so that the above model equa-
tion is modified to

m�vx
�s� − vx

�0�� = Jx
�s�, �3a�

m�vy
�s� − vy

�0�� = Jy,a
�s� + Jy,t

�s�, �3b�

m�vz
�s� − vz

�0�� = Jz
�s�. �3c�

We have thus replaced the impulse component Jy
�s� from Eq.

�2b� by Jy,a
�s� +Jy,t

�s�. Jy,a
�s� is the same as the impulse Jy

�s� in Eq.
�2b�. The subscript y ,a denotes that the impulse is directed
away from the plane of impact, and it is therefore always
positive in our coordinate system. This impulse is, as men-
tioned, due to the compression and recovery of the particle
material.

The impulse Jy,t
�s�=�sFy,tdt is directed toward the plane of

impact and is therefore always negative. It is caused by ad-
hesive forces, whatever their origin. This completes our dis-
cussion of the first stage of the collision.

The same discussion applies to the two other stages of the
collision. For the remainder of the compression period dur-
ing which the particle has stopped sliding, we have the fol-
lowing equations:

m�vx
�1� − vx

�s�� = Jx
�r�, �4a�

m�vy
�1� − vy

�s�� = Jy,a
�r� + Jy,t

�r�, �4b�

m�vz
�1� − vz

�s�� = Jz
�r�. �4c�

And for the last period �the recovery period�

m�vx
�2� − vx

�1�� = Jx
�2�, �5a�

m�vy
�2� − vy

�1�� = Jy,a
�2� + Jy,t

�2�, �5b�

m�vz
�2� − vz

�1�� = Jz
�2�. �5c�

We note that the attractive force during a collision actu-
ally begins to act slightly before the surfaces touch and that
they persist until the surfaces are removed some small dis-
tance from each other after the collision. Thus formally we
include these small time intervals before and after contact
during which the attractive force is active in the “compres-
sion” and “recovery” periods, respectively. This will not
change the Jy,a substantially, the time integrals of the elastic
force remain the same.

A small change in Jy,a will, however, be caused by the
short-range attractive force accelerating the particle toward
the surface on which it impacts, giving rise to an increase in
Jy,a. Another effect, which in turn will lower Jy,a, and is not
taken into account here or in the original model, is the de-
celeration of the impacting particle due to the outflow of
fluid from the narrow gap between the on-coming particle
and the surface on which it impacts �1�. Effects of this type
can be included in later refinements of the model.

Finally we work out the model for the rotation, which, for
this case, is the same as in the standard hard-sphere model,
because it does not contain the impulse in the y direction,

I��x
�s� − �x

�0�� = − aJz
�s�, �6a�

I��y
�s� − �y

�0�� = 0, �6b�

I��z
�s� − �z

�0�� = aJx
�s�, �6c�

Jy,a
Jx

Jx

y

Standard hard-sphere model

Jy,a

Jx
Jx

y

Jy,t
Jy

The extended model

FIG. 2. A two-dimensional illustration of the difference between
the standard hard-sphere model and the extended one.
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I��x
�1� − �x

�s�� = − aJz
�r�, �6d�

I��y
�1� − �y

�s�� = 0, �6e�

I��z
�1� − �z

�s�� = aJx
�r�, �6f�

I��x
�2� − �x

�1�� = − aJz
�2�, �6g�

I��y
�2� − �y

�1�� = 0, �6h�

I��z
�2� − �z

�1�� = aJx
�2�. �6i�

Here we make use of the fundamental equation from dy-
namics: I����=r�J, where r= �0,−a ,0� and a is particle
radius.

Physically, these equations evaluate the change in rotation
of the particle due to the time integral of the moment, around
the particle center of mass, of the force acting in the contact
point during the sliding period.

We note that, even though the equations for this case may
be the same as in the original model, a larger normal force
acting in the contact point due to the force Fy,t will cause a
higher frictional moment to act on the particle, and may
change a case II into a case I or a case III into a case II.

Finally we add three equations describing conditions on
the surface velocity of the particle at the point of contact at
particular instants during the collision. These are given in �1�
but we repeat them here because they will be used below:

�vx
�s� + a�z

�s��i + �vz
�s� − a�x

�s��k = 0, �7a�

�vx
�1� + a�z

�1��i + vy
�1�j + �vz

�1� − a�x
�1��k = 0, �7b�

�vx
�2� + a�z

�2��i + �vz
�2� − a�x

�2��k = 0. �7c�

In words these conditions are, respectively: no tangential ve-
locity at the end of the sliding period, no velocity at all at the
end of the compression period, and no tangential velocity at
the end of the recovery period.

B. Friction and restitution coefficient

Sliding is in the model of Crowe et al. modeled by Cou-
lomb’s law of friction. In order to know the tangential
force—and therefore the tangential impulse— generated in
the contact point during sliding, we require the normal force
acting in the contact. While in evaluating the force acting on
the particle as we did above, the two forces Fy,a and Fy,t were
added, they must be subtracted to evaluate the normal force
acting “in the contact point” �we keep in mind that the signs
of Fy,a and Fy,t are always opposite so that the two forces
physically act together in increasing the force acting in the
contact point�. The relation between the x, y, and z compo-
nents of the force/impulse is

Jx
�s� = − �xf�Jy,a

�s� − Jy,t
�s�� , �8�

Jz
�s� = − �zf�Jy,a

�s� − Jy,t
�s�� , �9�

�x
2 + �z

2 = 1, �10�

where f is Coulomb’s coefficient of friction, and ��x ,�y� are
the direction cosines for the sliding motion.

The standard definition of the coefficient of restitution for
a particle colliding with a wall is as the ratio of the absolute
value of the particle velocity, or momentum, normal to the
plane of impact after the collision to that before the collision

e =
vy

�2�

− vy
�0� =

mvy
�2�

m�− vy
�0��

. �11�

In the model of Crowe et al., this can also be written as the
ratio of the impulse during the recovery period to that during
the compression period

e =
Jy

�2�

Jy
�1� . �12�

Thus,

Jy
�2� = eJy

�1� = e�Jy
�s� + Jy

�r�� . �13�

If we, in the present model, wish to maintain a definition
consistent with Eq. �11�, we must define e as

e =
Jy,a

�2� + Jy,t
�2�

Jy,a
�1� + Jy,t

�1� . �14�

However, it is convenient for us to continue operating with
the coefficient restitution due to the material deformation,
i.e., the one defined by Eq. �12�. Let us now call this em,
defined by

em � Jy,a
�2�/Jy,a

�1� . �15�

This is also physically correct if we wish the coefficient of
restitution to describe irreversibilities during the collision,
leading to the loss of mechanical energy. With this, the
equivalent of Eq. �13� is

Jy
�2� = Jy,a

�2� + Jy,t
�2� = em�Jy,a

�s� + Jy,a
�r� � + Jy,t

�2�, �16�

the last equation being valid for case I only. Thus, em is here
equivalent to the standard definition of e in Eq. �12�, which is
also given in Crowe �1�.

1. Final equations for case I

We now solve the equations to obtain the final expressions
for the translational and rotational velocity components of
the particle leaving the collision. Combining equations Eqs.
�5b� and �16� gives

m�vy
�2� − vy

�1�� = em�Jy,a
�s� + Jy,a

�r� � + Jy,t
�2�. �17�

We note that vy
�1� is equal to zero �from the conditions on

the surface velocity in the contact point; see Eqs. �7��. Using
this, and combining Eq. �17� with Eq. �3b� and Eq. �4b� leads
to

vy
�2� = em�− vy

�0� −
Jy,t

�1�

m
	 +

Jy,t
�2�

m
. �18�

In the standard hard-sphere model we would derive here �1�
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vy
�2� = − evy

�0�. �19�

Other components of particle velocity are derived exactly
as in the standard hard-sphere model, since the new terms
introduced in this paper are not present in the equations for x
and z components,

vx
�2� =

5

7
�vx

�0� −
2a

5
�z

�0�	 , �20a�

vz
�2� =

5

7
�vz

�0� +
2a

5
�x

�0�	 , �20b�

�x
�2� = vz

�2�/a , �20c�

�y
�2� = �y

�0�, �20d�

�z
�2� = − vx

�2�/a . �20e�

C. Case II

In this case the sliding period terminates in the recovery
period.

The notation for the impulse components is as follows:
we denote by superscript �1�, �2�, and �s� the impulses during
the compression, the recovery and the part of the sliding
period falling in the recovery period, respectively, and by
superscript �r� the impulse during the “remainder” of the
recovery period after the particle has stopped sliding.

The following model is proposed that is similar to the
analogous equations describing case I,

m�vx
�1� − vx

�0�� = Jx
�1�, �21a�

m�vy
�1� − vy

�0�� = Jy,a
�1� + Jy,t

�1�, �21b�

m�vz
�1� − vz

�0�� = Jz
�1�, �21c�

m�vx
�s� − vx

�1�� = Jx
�s�, �22a�

m�vy
�s� − vy

�1�� = Jy,a
�s� + Jy,t

�s�, �22b�

m�vz
�s� − vz

�1�� = Jz
�s�, �22c�

m�vx
�2� − vx

�s�� = Jx
�r�, �23a�

m�vy
�2� − vy

�s�� = Jy,a
�r� + Jy,t

�r�, �23b�

m�vz
�2� − vz

�s�� = Jz
�r�, �23c�

I��x
�1� − �x

�0�� = − aJz
�1�, �24a�

I��y
�1� − �y

�0�� = 0, �24b�

I��z
�1� − �z

�0�� = aJx
�1�, �24c�

I��x
�s� − �x

�1�� = − aJz
�s�, �24d�

I��y
�s� − �y

�1�� = 0, �24e�

I��z
�s� − �z

�1�� = aJx
�s�, �24f�

I��x
�2� − �x

�s�� = − aJz
�r�, �24g�

I��y
�2� − �y

�s�� = 0, �24h�

I��z
�2� − �z

�s�� = aJx
�r�. �24i�

The definition of the coefficient of restitution due to ma-
terial deformation, em, is the same as before �Eq. �15�� lead-
ing to

Jy,a
�2� + Jy,t

�2� = Jy,a
�s� + Jy,a

�r� + Jy,t
�2� = emJy,a

�1� + Jy,t
�1�. �25�

Thus Eq. �21b� can be written as

m�vy
�1� − vy

�0�� =
Jy,a

�2�

em
+ Jy,t

�1�, �26�

which is the same as

m�vy
�1� − vy

�0�� =
Jy,a

�s� + Jy,a
�r�

em
+ Jy,t

�1�. �27�

We further impose the conditions that the tangential com-
ponent of surface velocity of the particle in the contact point
is zero at the end of the sliding and recovery periods simi-
larly to Eqs. �7a� and �7c� and that the y component of the
translational velocity is zero at the end of the compression
period, vy

�1�=0. We again use Coulombs law of friction to
relate the normal stresses to the tangential ones, in this case
both during the compression period and the part of the slid-
ing period falling in the recovery period, similarly to Eqs.
�8�–�10�.

Taking into account the condition vy
�1�=0, as well as Eqs.

�22b� and �23b�, we derive

vy
�2� = em�− vy

�0� −
Jy,t

�1�

m
	 +

Jy,t
�2�

m
, �28�

which is the same as Eq. �18�.
The remaining results, i.e., for the x and z components of

the linear velocity, as well as all the components of the an-
gular velocity are the same as in the standard hard-sphere
model and the same as in case I.

D. Case III

The third case is the situation where the particle continues
to slide also throughout the recovery period. We denote by
superscript �1� and �2� the impulses during the compression
and the recovery periods, respectively.

For this case the following model is proposed:

m�vx
�1� − vx

�0�� = Jx
�1�, �29a�

m�vy
�1� − vy

�0�� = Jy,a
�1� + Jy,t

�1�, �29b�
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m�vz
�1� − vz

�0�� = Jz
�1�, �29c�

m�vx
�2� − vx

�1�� = Jx
�2�, �30a�

m�vy
�2� − vy

�1�� = Jy,a
�2� + Jy,t

�2�, �30b�

m�vz
�2� − vz

�1�� = Jz
�2�, �30c�

I��x
�1� − �x

�0�� = − aJz
�1�, �31a�

I��y
�1� − �y

�0�� = 0, �31b�

I��z
�1� − �z

�0�� = aJx
�1�, �31c�

I��x
�2� − �x

�1�� = − aJz
�2�, �31d�

I��y
�2� − �y

�1�� = 0, �31e�

I��z
�2� − �z

�1�� = aJx
�2�. �31f�

Also for this case we have

vy
�1� = 0. �32�

We define the restitution coefficient due to material defor-
mation in the same way as in the previous section �see Eq.
�15��. Equation �30b� can thus be written as

m�vy
�2� − vy

�1�� = emJy,a
�1� + Jy,t

�2�. �33�

Using Eq. �29b� and after some arrangement, the final equa-
tion for vy

�2� becomes the same as for cases I and II,

vy
�2� = em�− vy

�0� −
Jy,t

�1�

m
	 +

Jy,t
�2�

m
. �34�

Also for this case we use Coulomb’s law of friction,

Jx
�1� = − �xf�Jy,a

�1� − Jy,t
�1�� , �35a�

Jz
�1� = − �zf�Jy,a

�1� − Jy,t
�1�� , �35b�

Jx
�2� = − �xf�Jy,a

�2� − Jy,t
�2�� , �35c�

Jz
�2� = − �zf�Jy,a

�2� − Jy,t
�2�� . �35d�

Use of Eqs. �29a�, �29b�, �32�, and �35a� leads to the follow-
ing equation:

vx
�1� = vx

�0� + �xf�vy
�0� + 2

Jy,t
�1�

m
	 . �36�

Further use of Eqs. �30a�, �30b�, �32�, and �35c�, as well as
�36� results in the following equation for vx

�2�:

vx
�2� = vx

�0� + �xfvy
�0��1 + em� + �xf
�2 + em�

Jy,t
�1�

m
+

Jy,t
�2�

m
� .

�37�

The same procedure may be used for deriving the final
expression for the z component of the postcollisional trans-
lational velocity, vz

�2�,

vz
�2� = vz

�0� + �zfvy
�0��1 + em� + �zf
�2 + em�

Jy,t
�1�

m
+

Jy,t
�2�

m
� .

�38�

We proceed to find the components of the angular velocity
after the collision. We start by using Eqs. �29b�, �31a�, and
�35b� to find the following expression for the angular veloc-
ity after the compression period:

�x
�1� = �x

�0� −
5

2a
�zf�vy

�0� + 2
Jy,t

�1�

m
	 . �39�

The final result for �x
�2� is obtained from this equation to-

gether with Eqs. �31d�, �35d�, �30b�, and �32�,

�x
�2� = �x

�0� −
5

2a
�zfvy

�0��em + 1� −
5

2a
�zf
�2 + em�

Jy,t
�1�

m
+

Jy,t
�2�

m
� .

�40�

In a similar way we obtain the final result for �z
�2�,

�z
�2� = �z

�0� +
5

2a
�xfvy

�0��em + 1� +
5

2a
�xf
�2 + em�

Jy,t
�1�

m
+

Jy,t
�2�

m
� .

�41�

The final result for �y
�2� is the same as in the other two cases,

�y
�2� = �y

�0�. �42�

We note that this case is, both here and in the original
hard-sphere model, not fully solved, since the direction co-
sines during the sliding collision, �x and �z, appear in the
solutions for the final velocity components. These direction
cosines are in principle unknown, since the particle—
depending on the direction of rotation—can veer off from its
translational path during the collision.

E. Conditions for occurrence of the cases

We have now derived the expressions for the translational
and rotational movement of the particle emerging from the
collision for each of the three cases. The only question that
remains is how to distinguish between the cases so that we
know which set of solutions to use for a specific situation.

As shown case I and case II, although different in prin-
ciple, lead to the same results. Therefore it is enough to
distinguish between cases II and III.

Matsumoto and Saito �31� show how to distinguish be-
tween the two cases for the standard hard-sphere model.
Their description is based on a two-dimensional �2D� colli-
sion. In the following, we give a detailed description of a
model that makes it possible to distinguish between the cases
for a three-dimensional �3D� collision with adhesion forces,
i.e., for the mathematical model developed in this paper. We
are basing this discussion on the paper of Matsumoto and
Saito.

The strategy is to derive expressions for the total normal
and tangential impulses during the collision, and compare the
tangential one with the one expected from Coulombs law of
friction. If the tangential impulse is lower than that expected
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from Coulombs law, sliding will have stopped sometimes
during the collision.

We begin by writing the system of impulse equations that
is valid for any point in time during the collision:

m�vx − vx
�0�� = Jx, �43a�

m�vy − vy
�0�� = Jy , �43b�

m�vz − vz
�0�� = Jz, �43c�

and for the rotation,

I��x − �x
�0�� = − aJz, �44a�

I��y − �y
�0�� = 0, �44b�

I��z − �z
�0�� = aJx. �44c�

The velocity of the particle surface at the contact point �de-
noted by sub-r� is

vx,r = vx + a�z, �45a�

vy,r = vy , �45b�

vz,r = vz − a�x, �45c�

which for the initial state becomes

vx,r
�0� = vx

�0� + a�z
�0�, �46a�

vy,r
�0� = vy

�0�, �46b�

vz,r
�0� = vz

�0� − a�x
�0�. �46c�

With the help of the above equations and using the fact
that for a sphere of radius a the moment of inertia I
= �2 /5�a2m, we can write the particle surface velocity in the
contact point during the collision in terms of its initial value
�its value just before the collision�.

vx,r = vx,r
�0� +

7

2

Jx

m
, �47a�

vy,r = vy,r
�0� +

Jy

m
, �47b�

vz,r = vz,r
�0� +

7

2

Jz

m
. �47c�

At the end of the compression period vy,r=0, so find the
normal impulse acting on the particle during the compression
period, Jy

�1�, we insert this in Eq. �47b� to obtain

Jy
�1� = − mvy,r

�0�. �48�

This impulsive force comprises both the interaction due to
material deformation and that due to the adhesive forces, i.e.,
Jy

�1�=Jy,a
�1� +Jy,t

�1�.
The y component of the impulse acting during the recov-

ery period is Jy
�2�=Jy,a

�2� +Jy,t
�2�. Using Eq. �15�, we can also

write: Jy
�2�=emJy,a

�1� +Jy,t
�2�. Thus an expression for the total nor-

mal impulse during the whole collision is

Jy,tot = Jy
�1� + Jy

�2� = − mvy,r
�0� + emJy,a

�1� + Jy,t
�2� �49�

and since Jy,a
�1� =Jy

�1�+Jy,t
�1�,

Jy,tot = − mvy,r
�0��1 + em� + emJy,t

�1� + Jy,t
�2�. �50�

We now derive an expression for the tangential impulse act-

ing on the particle in the contact point: Jt=�Jx
2+Jz

2, which
equals the tangential impulse at the end of the sliding period.

Using Eqs. �47� and taking into account that at the end of
the sliding period vx,r=vz,r=0 we obtain for the tangential
impulse during the entire collision,

Jt,tot =
2

7
m��vx,r

�0��2 + �vz,r
�0��2. �51�

Case I or II occur, as mentioned, if this is lower than the
value expected from Coulombs law of friction Jt,tot�Jy,totf
giving the criterion

2

7
m��vx

�0� + a�z
�0��2 + �vz

�0� − a�x
�0��2

� �− mvy
�0��1 + em� + emJy,t

�1� + Jy,t
�2��f . �52�

For zero adhesive force this criterion reduces to that in
Crowe et al. �1� and in 2D to that in Matsumoto and Saito
�31� �who, however, had the y axis reversed compared to this
study�.

F. Condition for deposition

Our model including adhesion distinguishes between the
two cases:

�i� “deposition” and
�ii� “rebound,”
and we now derive a criterion for which case applies.
We know already that the total impulse in the y direction

is described by Eq. �50�. Since vy,r
�0�=vy

�0� we can also write

Jy,tot = − mvy
�0��1 + em� + emJy,t

�1� + Jy,t
�2�. �53�

The particle will rebound after the collision if its velocity in
the y direction, vy

�2�, is greater than zero. We conclude from
the fundamental relation: m�vy

�2�−vy
�0��=Jy,tot that vy

�2��0 if
Jy,tot�−mvy

�0� and substituting for Jy,tot from Eq. �53�, we
arrive at the condition for the rebounding to take place,

vy
�0� �

1

emm
�Jy,t

�2� − emJy,t
�1�� . �54�

If this condition is not satisfied, the y component of particle
velocity after the collision will be negative �deposition�. In
practice, it can be set to zero.

Note that in the standard hard-sphere model the impulses
Jy,t

�1� and Jy,t
�2� are zero. Thus, if em�0, the above condition

becomes

vy
�0� � 0, �55�

which is always true since the y component of the initial
velocity is always negative. Thus the deposition will never
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occur in the standard hard-sphere model if em�0.
The above condition can also be derived in a more heu-

ristic way. As the particle approaches the wall, it will en-
counter the attractive force, and in response to the impulse,
Jy,t

�1�, it will attain a y velocity “higher” �more negative� by
�vy

�1�, say, than the one it would have had in the absence of
Jy,t

�1�. Conversely, on the way out after rebounding, it will be
decelerated by �vy

�2� �which is also negative� due to the at-
tractive �and thus negative� impulse Jy,t

�2�. The y velocity out
will thus be

vy
�2� = − em�vy

�0� + �vy
�1�� + �vy

�2�. �56�

Remembering that �vy
�·�=Jy,t

�·� /m leads to the same criterion as
Eq. �54� for vy

�2� to be greater than zero.

G. Model for Jy,t

To close the system of equations we need to find expres-
sions for the impulses acting during the compression and
recovery periods: Jy,t

�1� and Jy,t
�2�, since these terms represent

new variables in addition to those present in the original
hard-sphere model. They can be written in the integral form,

Jy,t
�1� = �

0

t1

Fy,tdt �57�

and

Jy,t
�2� = �

t1

t2

Fy,tdt , �58�

where Fy,t is the force acting on the particle in the downward
direction, t1 is the time of compression period, t2 is the total
collision time so that t2− t1 is the time of the recovery period.

The attractive force acting during a collision may be due
to, for example, van der Waals forces or liquid bridging. In
both cases the force will act not only during contact but also
over short distances during approach and possible departure.
To find the impulses we therefore need to include short pe-
riods before and after the collision in the “compression” and
“recovery” periods, respectively.

The potential of the force will constitute a potential well,
and irreversibilities during the collision will give rise to the
loss of mechanical energy, possibly resulting in the particle
not being able to escape this potential well on its way out.

Such irreversibilities are described by the coefficient of
restitution, and may physically be due to:

�i� plastic deformation of the particle and/or the wall ma-
terial;

�ii� irreversibilities in the adhesion process resulting from
the reorganization of molecules during the contact period
�25�.

�iii� viscous dissipation in the fluid between the particle
and the wall squeezed out during approach and sucked in
during departure. This can be dissipation in the carrier fluid
in which the collision takes place �1� or in the fluid contained
in a liquid bridge formed between the particle and the wall.

Quantification of either the coefficient of restitution, em or
the impulse due to attraction Jy,t from the physics is not the
focus of this paper. Theories for Hamaker interaction and

interaction during contact, such as the JKR theory, or for
interaction through liquid bridging may assist in formulating
semiempirical quantifications of Jy,t �34�. Normally we know
the attractive force as a function of surface separation, D say,
not time, and to obtain the integral over time for the impulse
we need to change variables, e.g., for the �extended� com-
pression period

�
0

t1

Fy,t�t�dt = �
D1

Dc

Fy,t�D�
dt

dD
dD = �

D1

Dc Fy,t�D�
vy�D�

dD ,

�59�

where D1 is the surface separation at some point in time
before the collision where the interaction force is still negli-
gible, and Dc is the surface separation at the end of the com-
pression period. The need to carry out this change of vari-
ables makes quantification of the impulses difficult even for
very simple functional forms for Fy,t�D�, since we require
vy�D�, which itself is a function of Fy,t�D� as well as a func-
tion of the properties of the particle and the wall. Even in
case of the simple functional form of Hamaker interaction
between a spherical body and a flat plate �25� acting during
the approach and possible departure,

Fy,t�D� = −
A

6D2a , �60�

where A is the Hamaker constant and a the radius of the
spherical body there is no analytical solution that we are
aware of to the problem of changing the variable of integra-
tion from D to t in Eq. �59�.

We note that Weber et al. �27�, when faced with the same
difficulties in their implementation of particle cohesion in a
numerical scheme, used a simple “square-well” potential,
which implies that a Dirac delta-type force acts between par-
ticles at a particular separation.

We choose in this case a similar simple interaction model,
but prefer to use a constant force acting over a certain range
of surface separations, namely, between a surface separation
where the Hamaker interaction can be considered negligible
to the surface separation at “contact.” We thus neglect attrac-
tive impulse during the period of actual contact between the
particle and the wall.

If the force Fy,t can be taken as constant during the colli-
sion then the integrals for the impulse become

Jy,t
�1� = Fy,tt1 �61�

and

Jy,t
�2� = Fy,t�t2 − t1� . �62�

So that it only remains to quantify Fy,t and find the times
during which it acts, i.e., finding t1 and t2. This, however, is
not a simple task either. The value of Fy,t reflecting correctly,
say, Hamaker interaction will depend on the velocity profile
of the particle when it is within the range of the attractive
force, and also t1 and t2 will depend not only on the initial
and final translational velocities, but also on the magnitude
of the attractive force itself and the inertia of the particle.
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So, for this paper we choose this constant force to be only
in some measure equivalent to the force acting due to Ha-
maker interactions by using the spatially mean value of Ha-
maker force over the separations where the Hamaker force is
significant.

We can with Weber et al. �27� assume the Hamaker force
to be negligible when it equals the force of gravity acting on
the particle. This happens at a surface separation of D1 for
which

−
A

6D1
2a =

4

3
�a3	gz ⇒ D1 =� A

8a2	gz�
. �63�

D1 comes to about 10 nm if the particle has a density of
1000 kg /m3, a radius of 20 
m and the Hamaker constant
is A=10−20 J.

We assume that the surface separation at “contact,” Dc
say, is 2 nm �25�. The mean force, which should be applied
at surface separations in the range D1−Dc is

Fy,t =

�
Dc

D1

−
A

6D2adD

�D1 − Dc�
=

Aa

6�D1 − Dc�
� 1

D1
−

1

Dc
	 = −

Aa

6DcD1
.

�64�

To find v�D� for use in Eq. �59�, we write down Newton’s
second law, resolved in the y direction, for a particle on
which this force is acting,

m
dvy

dt
= m

dvy

dD

dD

dt
= m

dvy

dD
vy = Fy,t, �65�

where m is the particle mass. This equation is variables sepa-
rable, and can be integrated directly. We now consider the
particle’s approach to the collision and its �possible� depar-
ture from the collision separately:

Approach. Here we integrate Eq. �65� between the limits
D1, where the y velocity is vy

�0� and an arbitrary surface sepa-
ration D, where the velocity is vy, giving

vy�D� = −�2Fy,t

m
�D − D1� + �vy

�0��2. �66�

Inserting this expression for v�D� in Eq. �59� and carrying
out the integration results in

Jy,t
approach = Jy,t

�1� = − m��2Fy,t�Dc − D1�
m

+ �vy
�0��2 − vy

�0�	 .

�67�

The velocity of the particle at impact, say v1, can be found
by inserting D=Dc in Eq. �66�,

v1 = vy�Dc� = −�2Fy,t

m
�Dc − D1� + �vy

�0��2. �68�

Please note that vy is negative before impact.
Departure. Here we integrate Eq. �65� between the limits

D=Dc, where the y-velocity is v2=−v1em and an arbitrary
surface separation, D, where the velocity is vy,

vy�D� =�2Fy,t

m
�D − Dc� + v2

2. �69�

Inserting this expression for v�D� in Eq. �59� and carrying
out the integration results in

Jy,t
departure = Jy,t

�2� = m��2Fy,t�D1 − Dc�
m

+ v2
2 − v2	 . �70�

Please note that the argument under the root sign can be
negative if the initial starting velocity v2 is too low or/and
the force Fy,t is too high. This corresponds to the case when
the particle deposits on the surface, i.e., it is not able to leave
the zone where the van der Waals force acts. Thus deposition
will take place if

2Fy,t�D1 − Dc�
m

+ v2
2 � 0 �71�

and taking into account Eq. �68� and the relation v2=−v1em,
we obtain

−
2Fy,t�D1 − Dc�

m
� 1

em
2 − 1	 � �vy

�0��2. �72�

Because Fy,t is negative, the left-hand side of the inequal-
ity is positive. Thus we can easily estimate the minimum
value of the initial velocity v0 that leads to deposition on the
surface. We can now come back to our extension of the hard-
sphere model and insert the new impulsive forces defined by
Eqs. �67� and �70�.

III. SIMULATION RESULTS

In this section we show some examples where our ex-
tended hard-sphere model is compared with the standard one
and the effect of the attractive force is illustrated. First we
investigate the simple case where one particle with a diam-
eter of 1 
m collides with a wall. Two components of the
initial velocity are fixed: vx

�0�=1.0 and vz
�0�=0.0, while vy

�0�

will vary for different cases. The restitution coefficient, em, is
equal to 0.9, while the Coulombian friction factor, f , is taken
as 0.15 �these values are typical for many applications in
applications involving granular materials�. The Hamaker
constant is equal to 10�10−20 J and the particle diameter is
1000 kg /m3.

The calculation results for this example are shown in Fig.
3. What we present is the y component of the velocity after
the collision, vy

�2�, as a function of the initial y component,
vy

�0�. The figure thus represents a range of collisions with
varying approach velocities. The two curves on the graph
compare the standard hard-sphere model with our extended
model.

The main difference is at the lower initial velocities. The
standard hard-sphere model is not able to simulate deposition
and the particles bounce off even under conditions where
deposition might be expected. Also for the cases when no
deposition occurs, the emerging velocity is too high.

We emphasize here, however, that for many practical ap-
plications where the effect of adhesion is negligible �e.g.,
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flows with high velocities and big particles�, the standard
hard-sphere model is sufficient.

Since the particle diameter is an important parameter in
determining when deposition take place, we investigate its
influence on the results by calculating the limiting approach
velocity, vy

�0�, at which deposition will take place, we can call
this limiting velocity v0. To do this we insert Eq. �60� into
Eq. �72� so that we obtain a function v0= f�a�, where a is the
radius of the particle

vy
�0� =

2

a

A�D1 − Dc�

4�DcD1	
� 1

em
2 − 1	�1/2

, �73�

where we have used the relation for the particle mass m
=	

4�a3

3 .
The function is shown in Fig. 4 where all other param-

eters �restitution coefficient, Hamaker constant etc.� are the
same as above. We have also marked the two domains that
correspond to the case where the particle deposits on the
surface and bounces off, respectively.

The model shown in this paper, as well as the results
presented in this section, refers to a single particle only. The
collision model may be implemented in Eulerian-Lagrangian
numerical simulations based on the tracking of individual
particles, where, between collisions, forces acting on the par-
ticles such as fluid-particle interactions must be considered.
Thus our model can be used for any system of particles, just
like the standard hard-sphere model.

IV. CONCLUDING REMARKS

In this paper we developed an extension of the standard
hard-sphere particle-wall collision model to account for par-
ticle adhesion. This extension of the model makes it possible
to account for any interaction acting in addition to the
“usual” mechanical collision as long as we know its math-
ematical formulation. This was done by modifying the hard-
sphere model described in detail in Crowe et al. �1�.

As an example we implemented a van-der-Waals-like in-
teraction, where we assumed a constant force to act equal to
the average of the van der Waals force over the range of
interaction. This to illustrate the effect of the extension to the
model in practical applications.

In the near future we wish to continue this research in
more than one direction. It is of interest, to quantify the
adhesion interaction building on the literature on this topic,
e.g., to describe the van der Waals interaction using more
correct approximations and simplify this in a physically re-
alistic way, such that it can be implemented in the collision
model. We will also formulate equations for particle-particle
collisions to model cohesion and the formation of aggre-
gates.
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FIG. 3. The y component of particle velocity after impact, vy
�2�

computed for various values of the initial value of this component
vy

�0�. The particle diameter is 1 
m and the restitution and friction
coefficients are 0.9 and 0.15, respectively. The model for adhesion
force is as described in Sec. II F.

FIG. 4. The graphical interpretation of Eq. �73�.
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